Local Poisson groupoids over mixed product Poisson structures and generalised double Bruhat cells

نویسندگان

چکیده

Given a standard complex semisimple Poisson Lie group $(G, \pi_{st})$, generalised double Bruhat cells $G^{u, v}$ and $O^u$ equipped with naturally defined holomorphic structures, where u, v are finite sequences of Weyl elements, were studied by Jiang Hua Lu the author. We prove in this paper that $G^{u,u}$ is groupoid over $O^u$, extending result from aforementioned authors about \pi_{st})$. Our on obtained as an application construction interesting its own right, local mixed product structure associated to action pair bialgebras. This involves using Lagrangian bisection symplectic closely related global R-matrix Weinstein Xu, twist direct groupoids.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holomorphic Poisson Structures and Groupoids

We study holomorphic Poisson manifolds, holomorphic Lie algebroids and holomorphic Lie groupoids from the viewpoint of real Poisson geometry. We give a characterization of holomorphic Poisson structures in terms of the Poisson Nijenhuis structures of Magri-Morosi and describe a double complex which computes the holomorphic Poisson cohomology. A holomorphic Lie algebroid structure on a vector bu...

متن کامل

Symplectic Groupoids and Poisson Manifolds

0. Introduction. A symplectic groupoid is a manifold T with a partially defined multiplication (satisfying certain axioms) and a compatible symplectic structure. The identity elements in T turn out to form a Poisson manifold To? and the correspondence between symplectic groupoids and Poisson manifolds is a natural extension of the one between Lie groups and Lie algebras. As with Lie groups, und...

متن کامل

Poisson Sigma Models and Symplectic Groupoids

We consider the Poisson sigma model associated to a Poisson manifold. The perturbative quantization of this model yields the Kontsevich star product formula. We study here the classical model in the Hamiltonian formalism. The phase space is the space of leaves of a Hamiltonian foliation and has a natural groupoid structure. If it is a manifold then it is a symplectic groupoid for the given Pois...

متن کامل

Groupoids and Poisson Sigma Models with Boundary

This note gives an overview on the construction of symplectic groupoids as reduced phase spaces of Poisson sigma models and its generalization in the infinite dimensional setting (before reduction).

متن کامل

Poisson Fibrations and Fibered Symplectic Groupoids

We show that Poisson fibrations integrate to a special kind of symplectic fibrations, called fibered symplectic groupoids.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symplectic Geometry

سال: 2021

ISSN: ['1527-5256', '1540-2347']

DOI: https://doi.org/10.4310/jsg.2021.v19.n4.a4